
Princeton University

ISCA 2019

Yatin A. Manerkar, Caroline Trippel, Margaret Martonosi

Demystifying Memory Models 

Across the Computing Stack

http://check.cs.princeton.edu/tutorial.html

While you wait:

1) Make sure you’ve got VirtualBox downloaded to your laptop:

https://www.virtualbox.org/wiki/Downloads

2) Make sure you have Tutorial VM downloaded (or use one of the USB drives):

http://check.cs.princeton.edu/tutorial_vm/Check_Tools_VM_2019.ova

VM Password: mcmsarefun

https://www.virtualbox.org/wiki/Downloads
http://check.cs.princeton.edu/tutorial_vm/Check_Tools_VM_2019.ova


Goals

▪Reestablish the basics: Why Memory Consistency Models matter… 
more than ever!

▪Give you concrete tools and techniques for broader MCM research

▪ Foster a broader community conversant and active in MCM issues

▪ Show connections outwards to other topics: Security, Distributed 
Systems, etc.

▪Get you thinking about future research possibilities in this area



Our Approach Today

▪ Start from basic knowledge of Memory Consistency Models

• Instruction at level of first-year graduate student

• Will give background info.

• If it’s too basic or too fast, say so.

▪Variety is the spice of life… Intersperse:

• Theory

• Techniques

• Tool specifics

• Demos



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”? Yes, eg: ❶❷❸❹



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?

How about just “42”?

Yes, eg: ❶❷❸❹



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?

How about just “42”?

Yes, eg: ❶❷❸❹

Yes, eg: ❶❸❹❷



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?

How about just “42”?

Could it print nothing?

Yes, eg: ❶❷❸❹

Yes, eg: ❶❸❹❷



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?

How about just “42”?

Could it print nothing?

Yes, eg: ❶❷❸❹

Yes, eg: ❶❸❹❷

Yes, eg: ❸❹❶❷



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?

How about just “42”?

Could it print nothing?

Yes, eg: ❶❷❸❹

Yes, eg: ❶❸❹❷

Yes, eg: ❸❹❶❷

These executions obey Sequential Consistency (SC) [Lamport79], which requires 
that the results of the overall program correspond to some in-order 
interleaving of the statements from each individual thread.



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

NO!



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

NO! YES!



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

NO! YES!

Why would we reorder memory operations?

How to specify what’s allowed and forbidden?

How do check that implementations match spec?

We’ll cover the answers today!



Why reorder memory operations?

Answer: Performance!

x: 0 y: 0
Memory

Core 0

x = 1;
y = 1;

Core 1

r1 = y;
r2 = x;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 0



Why reorder memory operations?

Answer: Performance!

x: 0 y: 0
Memory

Core 0

x = 1;
y = 1;

Core 1

r1 = y;
r2 = x;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 0

Can improve 
performance by 

sending both stores to 
memory in parallel



Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

r1 = y;
r2 = x;

x = 1;
y = 1;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1

x: 0

Store to y finishes 
quickly in cache



Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

x = 1;
y = 1;

r1 = y = 1;
r2 = x;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1

x: 0



Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

x = 1;
y = 1;

r1 = y = 1;
r2 = x = 0;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1x: 0 y: 1



Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

x = 1;
y = 1;

r1 = y = 1;
r2 = x = 0;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1x: 1 y: 1

By the time store of x is 
complete, Core 1 has 
observed reordering!



Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

r1 = y = 1;
r2 = x = 0;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1x: 1 y: 1

x = 1;
FENCE
y = 1;

r1 = y = 1;
r2 = x = 1;

Fence/synchronization 
instructions can enforce 
order between memory 

operations where needed



Compilers Reorder Memory Operations Too!

▪Compiler optimizations can also result in weak memory behaviours

• Example below: assume CPU performs instrs in order and 1 at a time

Thread 0 Thread 1

❶ x = 1;
❷ y = 1;
❸ x = 2;

❹ r1 = y;
❺ r2 = x;

Can r1 = 1 and r2 = 0?



Compilers Reorder Memory Operations Too!

▪Compiler optimizations can also result in weak memory behaviours

• Example below: assume CPU performs instrs in order and 1 at a time

Thread 0 Thread 1

❶ x = 1;
❷ y = 1;
❸ x = 2;

❹ r1 = y;
❺ r2 = x;

Can r1 = 1 and r2 = 0?

Compiler may coalesce 
these 2 stores (since no 
same-thread reads of x 

in between)



Compilers Reorder Memory Operations Too!

▪Compiler optimizations can also result in weak memory behaviours

• Example below: assume CPU performs instrs in order and 1 at a time

Thread 0 Thread 1

❶ x = 1;
❷ y = 1;
❸ x = 2;

❹ r1 = y;
❺ r2 = x;

Can r1 = 1 and r2 = 0?



Compilers Reorder Memory Operations Too!

▪Compiler optimizations can also result in weak memory behaviours

• Example below: assume CPU performs instrs in order and 1 at a time

Thread 0 Thread 1

❶ x = 1;
❷ y = 1;
❸ x = 2;

❹ r1 = y;
❺ r2 = x;

Can r1 = 1 and r2 = 0?

Now ❷❹❺❸ gives r1 = 1 and r2 = 0!



Memory Consistency Models (MCMs)

▪ ISA instructions represent hardware operations (add, sub, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

Compiler

Microarchitecture1

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.



Memory Consistency Models (MCMs)

▪ ISA instructions represent hardware operations (add, sub, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

Which compiler 
optimizations 

can I use?

Compiler

Microarchitecture1

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.



Memory Consistency Models (MCMs)

▪ ISA instructions represent hardware operations (add, sub, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

Which compiler 
optimizations 

can I use?

Compiler

Microarchitecture1

How much can I 
buffer and reorder 

memory operations?

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.



Memory Consistency Models (MCMs)

▪ ISA instructions represent hardware operations (add, sub, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

ISA-Level MCM (x86, 
ARMv8, RISC-V, etc)

Which compiler 
optimizations 

can I use?

Compiler

Microarchitecture1

How much can I 
buffer and reorder 

memory operations?

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.



Memory Consistency Models (MCMs)

▪ ISA instructions represent hardware operations (add, sub, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

ISA-Level MCM (x86, 
ARMv8, RISC-V, etc)

Which compiler 
optimizations 

can I use?

Compiler

Microarchitecture1

How much can I 
buffer and reorder 

memory operations?

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.

In a nutshell: MCMs specify what value will be 
returned when your program does a load!



Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java 

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD 

GPU

…

…

…

Shared Virtual Memory

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].



Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java 

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD 

GPU

…

…

…

Shared Virtual Memory

SW MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].



Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java 

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD 

GPU

…

…

…

Shared Virtual Memory

HW MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].



Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java 

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD 

GPU

…

…

…

Shared Virtual Memory

IR MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].



How are MCMs specified?

▪Natural language?

• E.g. Sequential Consistency [Lamport 1979]

▪What about more complicated models?

“The result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence in 
the order specified by its program.”



How are MCMs specified?

▪Excerpt from the ARMv8 manual (memory model section):



MCM Specifications Using Relations

▪ ISA-level MCMs defined using relational patterns [Shasha and Snir TOPLAS 1988] 

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = Coherence order
rf = Reads-from
fr = From-reads

Message passing (mp) litmus test

(i1) (i2) (i3) (i4)
po porf

fr



MCM Specifications Using Relations

▪ ISA-level MCMs defined using relational patterns [Shasha and Snir TOPLAS 1988] 

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = Coherence order
rf = Reads-from
fr = From-reads

Message passing (mp) litmus test

(i1) (i2) (i3) (i4)
po porf

fr



MCM Specifications Using Relations

▪ ISA-level MCMs defined using relational patterns [Shasha and Snir TOPLAS 1988] 

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = Coherence order
rf = Reads-from
fr = From-reads

Message passing (mp) litmus test

(i1) (i2) (i3) (i4)
po porf

fr



MCM Specifications Using Relations

▪ ISA-level MCMs defined using relational patterns [Shasha and Snir TOPLAS 1988] 

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = Coherence order
rf = Reads-from
fr = From-reads

Message passing (mp) litmus test

(i1) (i2) (i3) (i4)
po porf

fr



MCM Specifications Using Relations

▪ ISA-level MCMs defined using relational patterns [Shasha and Snir TOPLAS 1988] 

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

▪ Formal specifications of ISA + HLL MCMs

• x86 [Owens et al. TPHOLS2009], ARM [Pulte et al. POPL2018], C11 [Batty et al. POPL 2011], …

▪Automated formal tools e.g. herd [Alglave et al. TOPLAS 2014]

• Can formally analyse small test programs against these models

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = Coherence order
rf = Reads-from
fr = From-reads

Message passing (mp) litmus test

(i1) (i2) (i3) (i4)
po porf

fr



Interface (e.g. ISA-Level MCM)

The Need for MCM Verification

▪MCM specified at an interface between layers of the stack

▪Upper layers target the MCM; lower layers must maintain it!

Upper layer (e.g. Compiler)

Lower layer (e.g. Microarch.)



Interface (e.g. ISA-Level MCM)

The Need for MCM Verification

▪MCM specified at an interface between layers of the stack

▪Upper layers target the MCM; lower layers must maintain it!

Targets MCM of 
lower layer

Upper layer (e.g. Compiler)

Lower layer (e.g. Microarch.)



Interface (e.g. ISA-Level MCM)

The Need for MCM Verification

▪MCM specified at an interface between layers of the stack

▪Upper layers target the MCM; lower layers must maintain it!

Targets MCM of 
lower layer

Upper layer (e.g. Compiler)

Lower layer (e.g. Microarch.)

Must maintain 
MCM of interface!



???

The Need for MCM Verification

▪MCM specified at an interface between layers of the stack

▪Upper layers target the MCM; lower layers must maintain it!

Targets MCM of 
lower layer

Upper layer (e.g. Compiler)

Lower layer (e.g. Microarch.)

Must maintain 
MCM of interface!



The Check Suite: Tools For Verifying Memory 
Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

For more info: check.cs.Princeton.edu



The Check Suite: Tools For Verifying Memory 
Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

For more info: check.cs.Princeton.edu



The Check Suite: Tools For Verifying Memory 
Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

Our Approach
• Axiomatic specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers 

• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

A

C

B

For more info: check.cs.Princeton.edu



The Check Suite: Tools For Verifying Memory 
Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

Our Approach
• Axiomatic specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers 

• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

A

C

B

CheckMate
[Micro ‘18]
[IEEE Micro 
Top Picks] 

PipeProof
[Micro ‘18]
[Best Paper Nominee.
IEEE Micro Top Picks
Honorable Mention]

For more info: check.cs.Princeton.edu



The Check Suite: Tools For Verifying Memory 
Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

Our Approach
• Axiomatic specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers 

• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

A

C

B

CheckMate
[Micro ‘18]
[IEEE Micro 
Top Picks] 

PipeProof
[Micro ‘18]
[Best Paper Nominee.
IEEE Micro Top Picks
Honorable Mention]

For more info: check.cs.Princeton.edu

So far, tools have found bugs in:
• Widely-used Research simulator
• Cache coherence paper
• IBM XL C++ compiler (fixed in v13.1.5)
• In-design commercial processors
• RISC-V ISA specification
• Compiler mapping proofs
• C++ 11 mem model
• SpectrePrime, MeltdownPrime



In a nutshell, our tool philosophy…

▪Automate specification, verification, and translation related to MCMs

▪Comprehensive exploration of ordering possibilities

▪Key Techniques: Happens-before Graphs and SMT solvers

▪ Initially: Litmus-test driven (small test programs, 4-8 instrs)

▪Now: PipeProof demonstrates complete (i.e. all-program) analysis



Outline
▪ Coffee Break. 11-11:20

▪ Up and Down the Stack

• RTLCheck (15 minutes) (ym)

• TriCheck (10 minutes) (ct)

▪ Looking forward: Other uses of tools and 
techniques

• CheckMate for security (25 minutes) (ct)

▪ Conclusions and Bigger Picture (10 
minutes)

▪ Overview, Motivation, and MCM 
Background (15 minutes) (mm)

▪ PipeCheck: Verifying Microarchitectural 
Implementations against ISA Specs (45 
minutes)

• Includes hands-on of using uSpec DSL for 
specifying axioms (30 minutes) (ym)

▪ PipeProof: Beyond Litmus Tests (45 
minutes) (ym)

• Includes hands-on of proving simple 
microarch. across all programs (25 minutes)


