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Goals

▪Reestablish the basics: Why Memory Consistency Models matter… 
more than ever!

▪Give you concrete tools and techniques for broader MCM research

▪ Foster a broader community conversant and active in MCM issues

▪ Show connections outwards to other topics: Security, Distributed 
Systems, etc.

▪Get you thinking about future research possibilities in this area



Our Approach Today

▪ Start from basic knowledge of Memory Consistency Models

• Instruction at level of first-year graduate student

• Will give background info.

• If it’s too basic or too fast, say so.

▪Variety is the spice of life… Intersperse:

• Theory

• Techniques

• Tool specifics

• Demos



What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");
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These executions obey Sequential Consistency (SC) [Lamport79], which requires 
that the results of the overall program correspond to some in-order 
interleaving of the statements from each individual thread.
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What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

NO! YES!

Why would we reorder memory operations?

How to specify what’s allowed and forbidden?

How do check that implementations match spec?

We’ll cover the answers today!
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By the time store of x is 
complete, Core 1 has 
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Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

r1 = y = 1;
r2 = x = 0;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1x: 1 y: 1

x = 1;
FENCE
y = 1;

r1 = y = 1;
r2 = x = 1;

Fence/synchronization 
instructions can enforce 
order between memory 

operations where needed



Compilers Reorder Memory Operations Too!

▪Compiler optimizations can also result in weak memory behaviours

• Example below: assume CPU performs instrs in order and 1 at a time
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❺ r2 = x;

Can r1 = 1 and r2 = 0?
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Compilers Reorder Memory Operations Too!

▪Compiler optimizations can also result in weak memory behaviours

• Example below: assume CPU performs instrs in order and 1 at a time

Thread 0 Thread 1

❶ x = 1;
❷ y = 1;
❸ x = 2;

❹ r1 = y;
❺ r2 = x;

Can r1 = 1 and r2 = 0?

Now ❷❹❺❸ gives r1 = 1 and r2 = 0!



Memory Consistency Models (MCMs)

▪ ISA instructions represent hardware operations (add, sub, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

Compiler

Microarchitecture1

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.
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Memory Consistency Models (MCMs)

▪ ISA instructions represent hardware operations (add, sub, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

ISA-Level MCM (x86, 
ARMv8, RISC-V, etc)

Which compiler 
optimizations 

can I use?

Compiler

Microarchitecture1

How much can I 
buffer and reorder 

memory operations?

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.

In a nutshell: MCMs specify what value will be 
returned when your program does a load!
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…

Shared Virtual Memory

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].
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How are MCMs specified?

▪Natural language?

• E.g. Sequential Consistency [Lamport 1979]

▪What about more complicated models?

“The result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence in 
the order specified by its program.”



How are MCMs specified?

▪Excerpt from the ARMv8 manual (memory model section):



MCM Specifications Using Relations

▪ ISA-level MCMs defined using relational patterns [Shasha and Snir TOPLAS 1988] 

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = Coherence order
rf = Reads-from
fr = From-reads

Message passing (mp) litmus test

(i1) (i2) (i3) (i4)
po porf

fr
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• nodes: instructions, edges: ISA-level relations
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▪ Formal specifications of ISA + HLL MCMs

• x86 [Owens et al. TPHOLS2009], ARM [Pulte et al. POPL2018], C11 [Batty et al. POPL 2011], …

▪Automated formal tools e.g. herd [Alglave et al. TOPLAS 2014]

• Can formally analyse small test programs against these models
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Lower layer (e.g. Microarch.)
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The Check Suite: Tools For Verifying Memory 
Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]
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So far, tools have found bugs in:
• Widely-used Research simulator
• Cache coherence paper
• IBM XL C++ compiler (fixed in v13.1.5)
• In-design commercial processors
• RISC-V ISA specification
• Compiler mapping proofs
• C++ 11 mem model
• SpectrePrime, MeltdownPrime



In a nutshell, our tool philosophy…

▪Automate specification, verification, and translation related to MCMs

▪Comprehensive exploration of ordering possibilities

▪Key Techniques: Happens-before Graphs and SMT solvers

▪ Initially: Litmus-test driven (small test programs, 4-8 instrs)

▪Now: PipeProof demonstrates complete (i.e. all-program) analysis



Outline
▪ Coffee Break. 11-11:20

▪ Up and Down the Stack

• RTLCheck (15 minutes) (ym)

• TriCheck (10 minutes) (ct)

▪ Looking forward: Other uses of tools and 
techniques

• CheckMate for security (25 minutes) (ct)

▪ Conclusions and Bigger Picture (10 
minutes)

▪ Overview, Motivation, and MCM 
Background (15 minutes) (mm)

▪ PipeCheck: Verifying Microarchitectural 
Implementations against ISA Specs (45 
minutes)

• Includes hands-on of using uSpec DSL for 
specifying axioms (30 minutes) (ym)

▪ PipeProof: Beyond Litmus Tests (45 
minutes) (ym)

• Includes hands-on of proving simple 
microarch. across all programs (25 minutes)


